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We analyze the stability of sessile filaments �ridges� of nonvolatile liquids versus pearling in the case of
externally driven flow along a chemical stripe within the framework of the thin-film approximation. The ridges
can be stable with respect to pearling even if the contact line is not completely pinned. A generalized stability
criterion for moving contact lines is provided. For large wavelengths and no driving force, within perturbation
theory, an analytical expression of the growth rate of pearling instabilities is derived. A numerical analysis
shows that a body force along the ridge further stabilizes the ridge by reducing the growth rate of unstable
perturbations, even though there is no complete stabilization. Hence the stability criteria established in the
absence of driven flow ensure overall stability.
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I. INTRODUCTION

In the past decade, substantial efforts have been made to
integrate chemical processes into microfluidic systems
known as “labs on a chip” �1–3�. These microfluidic devices
not only allow for cheap mass production but they can also
operate with much smaller quantities of reactants and reac-
tion products than standard laboratory equipment.

In this context, both closed- and open-channel systems are
considered for fluid transport. While closed channels are
prone to clogging by, e.g., colloids or large biopolymers, the
fluid in open-channel systems has less friction because it is
in contact with less substrate material, and production is pos-
sibly cheaper. The substrate surfaces can be structured
chemically by printing or photographic techniques. Concep-
tually, the liquid is guided by lyophilic stripes on an other-
wise lyophobic substrate �4–7�, i.e., it is confined by laterally
varying substrate potentials, acting as “chemical walls.”

Here we analyze the stability of homogeneously filled
chemical channels with respect to pearling, i.e., breakup into
a string of droplets. For all equilibrium contact angles, on
homogeneous substrates sessile filaments �ridges� of non-
volatile liquids are unstable with respect to pearling, even in
the presence of line tension �8–10�. However, in the cases in
which the contact line is infinitely stiff or pinned, e.g., at the
edges of a chemical channel formed by a lyophilic stripe on
an otherwise lyophobic substrate, the instability is sup-
pressed if the contact angle of the liquid-vapor interface with
the substrate is smaller than 90° �11,12�. Molecular-
dynamics simulations have confirmed this even at the nano-
scale �13�.

From these results, it is not clear whether complete pin-
ning is required to stabilize a liquid ridge. In an actual

sample, the three-phase contact angle will not vary steplike
at the channel edge. One rather expects a gradual transition,
which leads to a partial stabilization: the contact line can
move but the lateral variation of the effective contact angle
will impose a restoring force.

In this paper, we describe a nonvolatile fluid on a chemi-
cal stripe with such partial stabilization by realistic �i.e., not
steplike� edges. To this end, we use a mesoscopic hydrody-
namic model based on incompressible Stokes dynamics, with
the long- and short-ranged molecular interactions incorpo-
rated in terms of an effective interface potential. We use a
numerical scheme based on the thin-film approximation, as-
suming a sharp liquid-gas interface, partial wetting on both
the stripe and the embedding substrate, small contact angles,
and smooth lateral variations of the disjoining pressure. Ana-
lytical estimates can be obtained for sufficiently large ridges.
We discuss the meaning and validity of the latter approxima-
tion in the context of finite-size issues.

In accordance with King et al. �14�, without driven flow
and on a homogeneous substrate we find that cylinderlike
sessile ridges are stationary but are prone to a Rayleigh-
Plateau-type pearling instability. We generalize the analytical
stability criterion for liquid ridges on chemical channels with
sharp boundaries, obtained with a capillary model �6,9�, to
the case of smooth chemical steps. A linear stability analysis
allows us to account for the occurrence of large-wavelength
pearling, both numerically and analytically. The presence of
a chemical stripe partially stabilizes the ridge with respect to
pearling. The analytical criterion for the stability of a pinned
ridge is in good accordance with the stability domain found
numerically. We also find a quantitative agreement between
the growth rate of long-wavelength pearling obtained from
numerical stability analysis and its corresponding analytical
expression obtained by a perturbative analysis.

An external body force applied along the ridge always has
an overall stabilizing effect. However, this driving force
never completely stabilizes an unstable liquid ridge but*rauscher@mf.mpg.de
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merely shifts the domain of unstable modes to larger wave-
lengths.

In Sec. II, we introduce the system we consider as well as
the numerical method we use, along with a discussion of
finite-size effects. In Sec. III, we introduce the dimensionless
thin-film equation and the parametrization of the chemical
stripe. We analyze the stationary solutions in Sec. IV and
their linear stability in Sec. V. We summarize and conclude
in Sec. VI.

II. DESCRIPTION OF THE SYSTEM

As illustrated in Fig. 1, we consider a viscous, incom-
pressible, and nonvolatile fluid on a partially wetting sub-
strate featuring a straight “chemical channel,” i.e., a lyophilic
stripe with macroscopic axial extent separating two lyopho-
bic domains. The equilibrium contact angle is smaller on the
channel than on the surrounding, macroscopically wide, ho-
mogeneous substrate. For reasons given below, our analysis
requires a finite spatial extent 2L in the transverse x direc-
tion. For convenience, we assume periodic boundary condi-
tions at x= �L. L is taken to be large enough so that the
stripe of width 2x0 can be considered to be sufficiently sepa-
rated from its periodic images. In this “chemical channel,” a

liquid ridge of local thickness H̃�x ,y , t� can be formed if the
amount of liquid is sufficiently large. This local thickness
includes possible variations in the vicinity of the ridgelike
stationary solution.

For such a configuration, the liquid ridge merges into a
wetting film of microscopic thickness far from the stripe, so

that H̃��x ,y , t�→Hfilm for �x��x0. One can thus define the
excess cross-sectional area

Vex�y,t� = �
−L

L

dx�H̃�x,y,t� − Hfilm� �1�

of the liquid in the channel. For y-invariant stationary solu-
tions, this quantity corresponds to the excess volume of liq-

uid per unit length on top of the wetting film and thus ad-
equately characterizes the extra amount of liquid in the
system independently of the finite lateral size 2L. We note
that the thickness Hfilm is typically coupled to the pressure
inside the liquid ridge.

We consider a finite lateral system size for the following
reason. Given a configuration in which a capillary ridge is in
stable mechanical equilibrium with the wetting film on a
substrate of finite width, extending the system size 2L at
constant excess cross section eventually leads to an unstable
configuration: upon transferring liquid from the ridge into
the wetting film, the pressure inside the ridge increases more
than in the wetting film and the ridge will drain into the film.
Therefore, the only globally stable configuration on arbi-
trarily large substrates is a basically flat wetting film with a
slightly increased thickness above the channel �15�.

Thus the existence of stable ridges is formally a pure
finite-size effect. However, as will be discussed in Sec. IV,
the limit of stability versus pearling at a given system size
can correspond to a width of the ridge that is small with
respect to the lateral extent of the system. Hence there is a
wide range of configurations for which the quantities rel-
evant for the dynamics of the ridge are primarily determined
by macroscopic quantities such as the excess cross section
Vex, which do not depend on the system size.

Within our approach, the thin film around the liquid ridge
plays an auxiliary role. It facilitates the mobility of the edges
of the ridge, but contributes negligibly to the dynamics
within an appropriately chosen range of configurations.

A body force aligned with the channel �e.g., gravity if the
substrate is tilted as illustrated in Fig. 1—the component
normal to the substrate can be neglected� drives the liquid
along the chemical stripe. Our goal is to establish and discuss
both analytically and numerically the conditions of linear
stability of a driven flow in a homogeneously filled channel,
in particular with respect to pearling.

Since liquid ridges with contact angles larger than 90° are
unstable even for pinned contact lines, we restrict our analy-
sis to significantly smaller contact angles for which the thin-
film approximation is valid �16�. As will be shown below, the
translational invariance of the base state effectively reduces
the corresponding boundary-value problem to a set of ordi-
nary differential equations for the base state and to an eigen-
value problem for ordinary differential equations for the lin-
ear stability analysis. An analytical analysis is possible in the
limit of large wavelengths of the pearling perturbation and
without driven flow.

In the general case, we solve the equations numerically
by homogeneous continuation, using the software
AUTO2000 �17�. With this numerical approach, instead of
looking for a nontrivial solution in a complicated system,
one starts with a simple configuration for which the solution
is known. In the present case, the latter is a flat wetting film
on a homogeneous substrate. By gradually incrementing the
system parameters toward nontrivial values, one is able to
explore a domain of nontrivial solutions containing the
simple starting point. In the present case, the most important
system parameters are the chemical contrast between the
channel and the embedding substrate, the excess cross sec-
tion, the driving force, and the wave number of the pertur-

flow

H
~

(x, y, t)

x0

L

x

y

z

FIG. 1. �Color online� Schematic view of the investigated sys-
tem. The substrate is topographically flat, invariant in the y direc-
tion, chemically heterogeneous, and 2L-periodic in the x direction.
A liquid ridge forms above the lyophilic stripe �gray� of width 2x0

centered on the y axis and a wetting film covers the surrounding
lyophobic regions �black�. A body force aligned with the y axis
�caused, e.g., by a substrate tilt� generates flow along the stripe. The

local film thickness at time t is given by H̃�x ,y , t�. Depending on
the characteristics of the chemical stripe, the ridge may be subject
to pearling instabilities �exaggerated�.
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bation. As for the explicit dependence of the substrate het-
erogeneity on the lateral coordinate x, treating x as a part of
the solution vector renders the system autonomous as re-
quired by AUTO2000.

III. THIN-FILM DYNAMICS

In the limit of small gradients �i.e., long wavelengths�, the
dynamics of a thin film of a Newtonian, nonvolatile viscous
liquid of viscosity � is well described by the standard thin-

film equation for the local film thickness H̃�x ,y , t� �see, e.g.,
Ref. �16��. In view of future purposes, we decompose it into
a conservation Eq. �2a�, an expression �2b� for the lateral

flow J̃, and an Eq. �2c� for the local pressure P̃,

�H̃�x,y,t�
�t

= − � · J̃�x,H̃�x,y,t�� , �2a�

J̃�x,H̃� = −
Q�H̃�

�
� �P̃�x,H̃� − �gy� , �2b�

P̃�x,H̃� = − ��x,H̃� − ��2H̃ . �2c�

The pressure in Eq. �2c� is the sum of the Laplace pres-
sure, which is proportional to the surface tension coefficient

�, and the disjoining pressure ��x , H̃�=−���x , H̃� /�H̃. We
choose �cf. Eq. �3�� the same functional form for the effec-

tive interface potential ��x , H̃� as frequently used in the con-
text of wetting phenomena �see, e.g., Ref. �18� and Refs.
�19,20� for refined versions�. However, the effective interface
potential is an equilibrium concept, and the dynamics in a
wetting film a few molecular layers thick is certainly not
given by hydrodynamic equations. In this sense, the repul-
sive part of � �or �� serves the purpose of keeping the liquid
film thickness nonzero even on the lyophobic substrate and
thus allows the three-phase contact line to move even in the
absence of hydrodynamic slip at the liquid-substrate inter-
face �21�. Moreover, as described below, the variation of the
contact angle between the channel and the substrate is en-
coded in the x dependence of �. The third aspect taken care
of by � is to include the influence of long-ranged dispersion
forces on the dynamics in the channel. Thus we do not ex-
pect Eq. �2� to be an accurate description of the microscopic
dynamics near the contact line and in the wetting layer;
rather, it bears some conceptual similarities with a phase
field equation �a numerical method introduced in the context
of crystal growth; see, e.g., Ref. �22�� for the three-phase
contact line. In particular, here it is not necessary to take the
location of the edge into account explicitly. Also, since we do
not discuss wetting transitions within this model, we do not
expect a strong dependence of our results on details of �, in
particular not on the precise form of its short-ranged repul-
sive part and of other subdominant terms.

The additional pressure term �gy in Eq. �2b� models the
applied body force with acceleration g of the mass density �

�23�. The mobility factor Q�H̃�
� = H̃3

3� results from the integra-
tion of the Poiseuille-type velocity profile over the vertical

coordinate. Here we neglect drag by a vapor phase on the
liquid-vapor interface and slip at the substrate �24�.

The thickness H̃, the pressure P̃, and the flow J̃ depend on
the transverse coordinate x. Since the chemical heterogeneity
of the substrate is symmetric with respect to x=0 and the
driving force is aligned with the y axis, the stationary con-
figurations exhibit the same symmetry.

Here we focus on the symmetric pearling mode �see Fig.
1� and thus we consider only the interval x� �0,L� �25�. Due
to symmetry and the 2L-periodicity, odd-order derivatives of
the film thickness with respect to x vanish at x=0 and x=L
for both the stationary profile and the perturbation.

The effective interface potential we use to model partial
wetting is a two-term power law with attraction �A�x�	0� at
long range and repulsion �B�x�	0� at short range,

��x,H̃� = −
1

2

A�x�

H̃2
+

1

8

B�x�

H̃8
. �3�

The two terms follow from integrating the liquid-liquid
and liquid-substrate Lennard-Jones pair potentials �20�, as-
suming a homogeneous substrate. We model a chemically
inhomogeneous substrate by effective amplitudes A�x� and
B�x�, accounting for a local equilibrium wetting film thick-
ness a�x�= � B�x�

A�x� �
1/6 and an ensuing effective local contact

angle �19�,


eq�x� = arccos�1 + ��x,a�x��/�� = arccos	1 −
3A�x�

8��a�x��2
 .

�4�

Since in the present study we do not assign a quantitative
meaning to the residual film but use it in order to facilitate
contact line mobility, for numerical convenience we choose
B�x��A�x�, so that a=const is uniform over the whole sub-
strate. According to Eq. �4�, the contact angle contrast is then
provided by the amplitude A�x�, which we refer to as the
Hamaker constant, incorporating the commonly used prefac-
tor �6��−1 �18,19�. Thus, within our model for the chemical
heterogeneity and the thin-film approximation, Young’s law
provides a local relation between the equilibrium contact
angle and the Hamaker constant,

A�x� =
4

3
a2��
eq�x��2. �5�

In order to describe a chemical channel, we choose A�x�
to be a smooth, 2L-periodic function of the transverse coor-
dinate x, symmetric around x=0, with well-defined plateau
values both inside the stripe �Ain for �x�
x0� and on the
surrounding substrate �Aout for x0
 �x��. At the edges of the
stripe, A�x� varies smoothly over an effective step width w. A
chemical channel is thus characterized by the stripe width
2x0, the step width w, and the chemical contrast Aout−Ain.
For the subsequent numerical analysis, we choose the fol-
lowing explicit functional form for A�x�:

A�x� = Ain +
Aout − Ain

2
�1 − tanh f�x�� , �6a�

STABILITY OF LIQUID RIDGES ON CHEMICAL MICRO-... PHYSICAL REVIEW E 77, 061605 �2008�

061605-3



f�x� = 2L
cos�x

L − cos
�x0

L

�w sin
�x0

L

. �6b�

The corresponding structure of the chemical step near the
channel edge is illustrated in Fig. 2.

In order to rescale the thin-film equation, we take the
residual film thickness a as the vertical length scale of the
problem so that in these units � attains its minimum at H̃
=1. We also take Ain as a reference Hamaker constant. Equa-
tions �2a�–�2c� then yield a lateral length scale �=a2�� /Ain,
a pressure scale Ain /a=�a /�2, a time scale �= ��4

�a3 , an accel-
eration scale �= �a

��3 , and a scale factor for the slopes: �= a
�


1. We note that these scales, just like a and Ain, are arbi-
trary �but suitable� and merely provide a consistent way to
render the equations dimensionless with a minimal set of
independent system parameters left. For example, the lateral

length scale � is given by �=�6��, where �� =�� / �2�

�H̃2
�a� is

the lateral correlation length of the interfacial height-height
correlation function in thermal equilibrium �19�.

We introduce dimensionless variables x�, y�, H�, and g�

such that x=x��, y=y��, H=H�a, and g=g��. In order to
avoid clumsy notations, we drop the asterisk in the follow-
ing. Accordingly, the dimensionless version of Eq. �2� is

�H̃�x,y,t�
�t

= − � · J̃�x,H̃�x,y,t�� , �7a�

J̃�x,H̃� = − Q�H̃� � �P̃�x,H̃� − gy� , �7b�

P̃�x,H̃� = − ��x,H̃� − �2H̃ , �7c�

where � and Q are defined as

��x,H̃� = −
��

�H̃
= − A�x�
 1

H̃3
−

1

H̃9� �8�

and

Q = H̃3/3, �9�

while the rescaled Hamaker constant A�x� takes the form:

A�x� = 1 +
Aout/Ain − 1

2
�1 − tanh f�x�� . �10�

Since the slopes have been rescaled by �=a /�
1, they
are no longer small. In particular, the rescaled contact angle


̄eq�x�=
eq /�= 1
2
�3A�x� equals 
̄in= 1

2
�3 inside the stripe and


̄out=
1
2
�3Aout /Ain outside the stripe. In the following, we

adopt the overbarred notation for the rescaled contact angle
in order to avoid confusion.

IV. STATIONARY SOLUTION

For the stationary solution of Eq. �6�, there is only flow
along the channel and the system is translationally invariant

in the y direction. The stationary film profile H̃stat=H�x� is
given by

− ��x,H�x�� − H��x� = P , �11�

which is the same equation as the one characterizing the
equilibrium profile in the absence of flow. Here the pressure
P is independent of x, y, and t, and it is a free parameter that
is determined by the excess amount Vex of liquid present in
the channel. The local flow is J= (0,Jy�x� ,0), with Jy�x�
=gQ�H�x��.

With the disjoining pressure in Eq. �8�, a trivial solution
of Eq. �11� is H=1 and P=0. Homogeneous continuation
allows us to reach numerically the nontrivial solutions H�x�
by continuously varying the parameters of the problem, i.e.,
P �or Vex� and the chemical contrast Aout−Ain. As long as
Aout−Ain=0, parameters such as the effective edge width w
do not affect the trivial solution and thus can be set to desired
values before the continuation.

First, we analyze the pressure P as a function of the ex-
cess cross section Vex �see Eq. �1�� and how it is affected by
the chemical heterogeneity of the substrate �see Fig. 3�b��.
Each point �Vex , P� corresponds to a liquid ridge �Fig. 3�a��
centered around the axis of the chemical channel. The outer
part of the substrate is covered by a film of thickness close to
1, which is governed by the disjoining pressure. In the cen-
tral region of the ridge, the thickness is large so that due to
the vanishing of � for large H the profile is determined by
the capillary term H��x� in Eq. �11�. The film thickness de-
creases monotonically from the center of the wedge toward
the wetting film. The edges of the liquid ridge can be located

-2 -1 0 1 2

0.8

1

1.2

1.4

1.6

1.8

H~
/a

(c)

Φ (x, H
~

)/Ain

-0.25
0.00

0.25
0.50

0.75

-0.50

-0.75

-1.00

-1.25

minimum

(x - x0)/w

0.8

1

1.2

1.4

1.6

1.8

-0.500.51

Φ (x = 0, H
~

)/Ain ,

H~
/a

(a)

Φ (x, H
~

)

w = 1

L

Φ (x = 0, H
~

)
=

A(x) Ain

Π (x =0, H
~

)/Ain

→∞

Φ
Π

4

2

0

210-1-2

A
/A

in

(x - x0)/w

(b) Aout/Ain

FIG. 2. Present model of the chemical step of width w=1 with
Aout=4 and Ain=1 as used in the numerical analysis. In the limiting

case of infinite lateral extent 2L, Eq. �6� reduces to f�x�=2
x−x0

w . �a�
Effective interface potential � and disjoining pressure � at the
channel center x=0 �see Eqs. �6�, �8�, and �10��. �b� Laterally vary-
ing amplitude A�x� as defined in Eq. �5�. �c� Contour plot of the
effective interface potential � near the channel edge. Note that the

position H̃=1 of the minimum of � as a function of H̃ is indepen-
dent of x.
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inside the channel �i.e., at �x��x0�, be “pinned” at the chemi-
cal steps �i.e., at ��x�−x0��w�, or “spill” onto the surrounding
substrate �i.e., at �x�	x0�. In that latter case, the channel will
have little effect on the system, and a spilling ridge has prop-
erties similar to those of a ridge on a homogeneous substrate
without a chemical channel.

The major features of the �Vex , P� diagram in Fig. 3�b� are
the following. If the edge of a large ridge �i.e., apex height
�1� is well inside or well outside the channel, P�Vex� exhib-

its a power law P�Vex
−1/2 with a prefactor that increases with

the equilibrium contact angle 
̄eq. For sufficiently large
ridges, the prefactor is given by Eq. �5�; cf. Eq. �15�. For
edges pinned at sufficiently sharp chemical steps �i.e., for
sufficiently small w� the crossover between the power laws
corresponding to the inner and outer parts of the channel
features a change of sign for the slope dP

dVex
. The latter feature

is important for the main focus of our study, because dP
dVex

	0 will turn out to be the criterion of ridge stability.
In the following, we first analyze a ridge on a homoge-

neous substrate, governed by capillarity and resting on a film
the thickness of which is determined by the effective inter-
face potential. From these considerations, we derive the
power law P�Vex

−1/2 and discuss features and limitations of
this analytical model that will be relevant for the pearling
instability to be discussed in Sec. V.

Assuming that the expression for P in Eq. �7c� reduces to
−�2H for the ridge, and to −� for the wetting film, we ob-
tain, for a homogeneous substrate, the following simple
shape for a ridge of half-width r:

H�x� = �Hfilm +
P

2
�r2 − x2� if �x� � r ,

Hfilm if r � �x� .
� �12�

The wetting film thickness Hfilm=1+ P / �8
̄eq
2 � is obtained

by solving −��Hfilm�= P for Hfilm�1 and P
1. The half-
width r is determined by the contact angle according to

tan�
̄�= � �H
�x �x=r��� so that 
̄=
 /�� Pr. The contact angle 
̄

of the ridge depends on the pressure P via Hfilm,


̄ =
1

�
arccos�1 + ��Hfilm�/�� . �13�

However, to leading order in P this is simply the equilibrium

contact angle 
̄eq= 1
�arccos�1+��a� /�� given by Eq. �5� and

the first correction is quadratic in P.
In order to justify the auxiliary role of the thin film de-

spite the intrinsic lateral finite-size effect �see Sec. II�, we
investigate that regime in which the macroscopic character-
istics of H�x� dominate. For the shape given by Eq. �12� and

with P= 
̄ /r, one obtains for the cross section V
=�−L

L H�x�dx and the excess cross section Vex the following
expressions:

V − Vex = 2L
1 +
P

8
̄2� = 2L
1 +
1

8
̄r
� �14�

and

Vex =
2

3
Pr3 =

2

3

̄r2 =

2

3

̄3/P2. �15�

Equation �15� implies that for fixed 
̄, one has P�Vex
−1/2.

In order to ensure that the film at x= �L is indeed flat, one
has to choose the system size L much larger than the ridge
width 2r, i.e., L�r. Moreover, the scaled thickness of the
film outside the ridge should be close to its equilibrium value

1, which requires r
̄�1 /8, independently of L. As long as
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FIG. 3. �Color online� �a� Stationary cross-section profiles of the
liquid ridge on a chemical channel of half-width x0=50 and with
edges of effective width w=10 for excess cross sections Vex=0,
500, 1000, 2000, 3000, and 4000 �see Eq. �1��. Also shown is the
lateral dependence of the Hamaker constant A in units of Ain and its
main features as given by Eq. �5�. A /Ain=1 and A /Ain=Aout /Ain

=4 correspond to 
in=
�3
2 � and 
out=�3�, respectively ��=a /� is the

scale factor for the slopes, with the lateral scale �=a2 /�� /Ain�. �b�
�P ,Vex� for the same values of Ain and Aout as in �a� for w=10
�dashed line, with dots indicating those systems that the profiles in
�a� correspond to�, 20 �dashed-dotted line�, and 30 �solid line�. The
thinner lines correspond to the power laws P�Vex

−1/2 given by Eqs.
�5� and �15� for ridges resting on homogeneous substrates corre-
sponding to the outside of the channel �dashed-double-dotted� and
to the inside of the channel �dotted�. For w�30, P�Vex� is mono-
tonic while for w�30 there is a range of cross sections for which
dP

dVex
	0.
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these two criteria are satisfied, the excess cross section Vex
will be, by construction, independent of the system size 2L.

As we shall show in Sec. V, dP
dV and �Qdx are two key

quantities that determine the stability of the liquid ridge. To a
good approximation, both should be independent of the sys-
tem size.

For the pressure P this means that the derivative with
respect to the total cross section V should be approximately
equal to the derivative with respect to the excess cross sec-
tion Vex. From Eqs. �14� and �15�, one obtains the ratio of the
derivatives with respect to Vex and V,

dP

dVex

dP

dV�−1

=
dV

dVex
= 1 + 2L

d

dVex

 P

8
̄2� = 1 −
3L

16
̄2r3
,

�16�

where the substrate characteristics L and 
̄ are kept constant.

This poses an upper bound on the system size: 3L
16
̄2r3,
which quantifies the lateral finite-size effect outlined in Sec.
II: if the width 2r of a ridge is small enough with respect to
the total system size 2L, the surrounding film can drain liq-
uid from the ridge while acquiring less additional pressure
than the shrunk ridge. This basic instability of stationary
ridges �or drops� for large system size L is a consequence of
the smoothly varying effective interface potential �.

For the shape given in Eq. �12�, one can also calculate the
integral over x of the mobility factor Q�H�= H3

3 . For suffi-
ciently large ridges �such that P is small and thus the film

thickness is close to 1, i.e., r
̄�1 /8� one obtains

�
−L

L

Q�H�x��dx =
2L

3
+

2

3

̄r2 +

4

15

̄2r3 +

4

105

̄3r4. �17�

The last term on the right-hand side is the excess mobility

integral, which can be written in terms of Vex= 2
3 
̄r2 as


� Qdx�
ex

= �
−L

L

Q�H�x� − Hfilm�dx =
3
̄

35
Vex

2 . �18�

The second and the third terms on the right-hand side of Eq.
�17� are negligible with respect to the fourth and last one if

r
̄��35 /2 and r
̄�7, respectively. For 
̄3r4�
35
2 L, the ex-

cess mobility integral dominates the contribution from the
film. A similar argument can be formulated in the presence of
slippage at the substrate, i.e., for a more general expression
of Q.

The lower bound on L is thus �r �so that the liquid ridge
does not interfere with its periodic images�, while the upper
bounds are �r3 �see the text after Eq. �16�� and �r4 �see
above�. This implies that for every large enough r, one can
find a range of system sizes L within which the key quanti-
ties of the linear stability �as discussed in the following sec-
tion� are independent of L and depend only on the macro-
scopic ridge cross section Vex.

V. LINEAR STABILITY ANALYSIS

In order to assess the stability of a liquid ridge on a
chemical channel, we consider the time evolution of small

perturbations of the stationary film thickness as well as the
corresponding small perturbations of the pressure and the
flows. Since the base state is translationally invariant in the y
direction, we consider perturbations with the form of plane
waves,

H̃�x,y,t� = H�x� + �h�x�e�t−iky , �19a�

P̃�x,y,t� = P + �p�x�e�t−iky , �19b�

J̃x�x,y,t� = 0 + �jx�x�e�t−iky , �19c�

J̃y�x,y,t� = Jy�x� + �jy�x�e�t−iky , �19d�

with �
1. Insertion into Eqs. �7a�–�7c� and expansion to
first order in � leads to the following linear eigenvalue prob-
lem for the complex growth rate ��k�:

��k�h = −
djx

dx
− k2Qp + ikg� dQ

dH̃
�

H

h , �20a�

jx = − Q
dp

dx
, �20b�

p = 
k2 − � ��

�H̃
�

H

�h −
dh�

dx
, �20c�

h� =
dh

dx
. �20d�

In order to solve this problem numerically by continuation
from a simple configuration, one must integrate Eq. �11� for
the stationary profile and the linearized Eqs. �20� together. As
in Sec. IV, we render the system autonomous by introducing
s= x

L and converting x into a component of the solution vec-
tor. This leads to the following first-order system of nonlin-
ear equations:

d

ds�
x

H

H�

h

h�

p

jx

� = L�
1

H�

− � − P

h�


k2 −
��

�H
�h − p

− jx/Q

− 
� − ikg
dQ

dH
�h − k2Qp

� . �21�

We note that h, h�, p, and jx are in general complex-valued
functions of s. Only for g=0 are there real solutions.

The spectrum is semidiscrete. The wave vector k along
the y direction is continuous, while the solutions of Eq. �21�
for a given k are generated by a discrete family of modes due
to the finite lateral extent L. We are primarily interested in
the varicose or pearling mode, which is obtained by continu-
ation from the fundamental symmetric mode, which in the
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simple case of a homogeneous substrate covered by a film of
thickness H=1 corresponds to perturbations in the y direc-
tion only,

h = 1, �22�

jx = 0, �23�

p = k2 + 6A , �24�

��k� = ikg − k2�k2 + 6A� . �25�

Since A= 4
3 
̄2	0, Re �=−k2�k2+6A��0 and for any real

k�0 the fundamental symmetric mode is unconditionally
stable on a homogeneous substrate covered by a flat residual
film. It is only in homogeneous situations that this mode �i.e.,
a plane wave along the y direction� has no nodes along the x
direction �cf. Eq. �30��.

A. Systems without driven flow: g=0

The Rayleigh-Plateau instability occurs for long wave-
lengths, i.e., k→0. For large k, however, surface tension will
stabilize all perturbations and we expect ��k��−k4 in this
limit. In order to assess the stability of a liquid ridge, we
therefore focus on the limit k→0. Since the mode with k
=0 is marginally stable due to volume conservation, we have
to infer the stability or instability of a ridge from the eigen-
value for small nonzero values of k.

Figure 4 shows the pressure P for a chemical channel
with w=10 �compare Fig. 3�b�� and the �purely real� growth
rate � of long-wavelength perturbations �determined numeri-
cally by solving Eq. �21�� as a function of the excess cross
section Vex. We emphasize two features of this figure.

First, the juxtaposition of the two graphs clearly suggests
dP

dVex
	0 as a stability criterion for large-wavelength deforma-

tions of the ridge. All long-wavelength modes possess a sta-
bility domain ���k ;Vex��0�, which includes the range of Vex

for which dP
dVex

	0. These are also the cross sections for
which the edges of the ridge are pinned at the channel edge
�see Fig. 3�.

Second, for values of Vex for which the edges of the base
state of the liquid ridge are well outside the chemical chan-
nel, ��Vex ,k�P�Vex� /k2 converges to a constant independent
of Vex for k→0. This is characteristic for ridges resting on
homogeneous substrates, and we shall derive a correspond-
ing analytic expression below.

The first observation has a simple explanation. A long-
wavelength perturbation corresponds to a periodic arrange-
ment of liquid bumps separated by thinned regions. For
small k, the transition regions between the bumps and the
thinned regions can be ignored and the pressure in such a
bump is approximately given by the pressure in a homoge-
neous ridge of corresponding cross section. If dP

dV 	0, the
pressure in the thicker part will be larger than in the thinner
part and the liquid will flow from the bump to the thin part,
leveling the perturbation. If, on the other hand, dP

dV �0, the
pressure in the bump will be smaller than in the thin part, the
bump will be inflated �for the same reason as a small soap

bubble inflates a larger one�, and the perturbation will grow.
In the following, we shall confirm the phenomenological

stability criterion dP
dV 	0 by a perturbation analysis for small

k of the eigenvalue problem formulated in Eq. �19�. To this
end, for g=0 we write Eq. �19� as a differential equation of
fourth order for h�x ;k�,

��k�h�x;k� = �F̂ + K̂�h�x;k� �26�

with the k-independent linear operator

F̂ = −
�

�x
Q�H�

�

�x

 ��

�H
+

�2

�x2� �27�

and the k-dependent linear operator

K̂ = k2Q�H�
 ��

�H
+

�

�x2 − k2� + k2 �

�x
�Q�H�

�

�x
� . �28�

Both F̂ and K̂ act on h�x ;k� via multiplication followed by
differentiation. With the usual scalar product �� ���
= 1

2L�−L
L �̄�x���x�dx in the space of 2L-periodic complex-

valued functions, where the overbar indicates complex con-

jugation, the adjoint operator to F̂ is
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e(
ω
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(a)
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k = 0.1

θ- 4
eq/35

FIG. 4. Part �a� shows the �P ,Vex� diagram of the stationary
solutions for a given substrate heterogeneity �Ain=1, Aout=4, w
=10, x0=50; compare Fig. 3�. In this case, the chemical steps are
sharp enough for a change of sign of dP

dVex
in a finite interval of

excess cross sections Vex. As a function of Vex, �b� shows the
growth rate Re ��k ;Vex� �divided by k2 and multiplied by P�Vex��
of long-wavelength varicose modes for g=0 and for several small
values of k. The stability window of the varicose mode corresponds
to the range where dP

dVex
	0. Note that for small wave numbers k and

large Vex, P��Vex ,k� /k2 approaches a plateau �with a value pre-

dicted by Eq. �35� to be 9
35 =0.26; for large Vex one has 
̄eq

2

=3Aout /4=3, which is consistent with the observed value�. On the
present scales, the curves for k�10−3 would be barely distinguish-
able from the one for k=10−3. For k=0.01, a typical stabilization
can be seen for Vex�17000, as the wavelength corresponding to k
becomes short with respect to the ridge width. For k=0.1, a finite-
size effect is observed for Vex�2500: in this case, the mode no
longer corresponds to a bulging of the ridge but to system-wide
perturbations of the film, which are stable.
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F̂† = − 
 ��

�H
+

�2

�x2� �

�x
�Q�H�

�

�x
� . �29�

By construction, F̂ and F̂† have the same discrete spec-
trum of eigenvalues �n�k=0� and the eigenfunctions fn�x�
�of F̂� and fm

� �x� �of F̂†, also called left eigenfunctions of F̂�
to different eigenvalues are orthogonal, i.e., �fm

� � fn�=�mn.

�Recall that f̄m, not fm
� , is the complex conjugate to fm.� Since

both operators commute with the parity operator, in the fol-
lowing we can restrict our analysis to modes symmetric with
respect to x=0. As we already observed for the numerical
solution, the mode relevant for the pearling instability is the
fundamental symmetric mode. By differentiating Eq. �11�
with respect to P, one can show that dH

dP �x�= dH
dV �x� / dP

dV is an

eigenfunction of F̂ corresponding to the eigenvalue �0�k
=0�=0. The normalized set of fundamental modes is then

f0�x� = 2L
dH�x�

dV
and f0

��x� = 1. �30�

Although f0�x� is the fundamental mode, in the interval
�0,L� it can have a �single� zero at the edge of the ridge. On
the ridge dH�x�

dV is positive, whereas on the surrounding flat
film it is negative if dP

dV �0. One can show that �f0
� � f0�=1 by

swapping the integration with respect to x and the differen-
tiation with respect to V. The model shape given by Eq. �12�,
where Hfilm=1+ P / �8
̄eq

2 �, provides an instructive illustra-
tion.

For small k, we assume that the fundamental eigenmode
h0�x ;k� differs only slightly from f0�x� and we can expand it
�up to a normalization constant that we do not need to con-

sider� in terms of eigenfunctions of F̂,

h0�x;k� = f0�x� + �
n	0

an�k�fn�x� , �31�

with expansion coefficients an�k� of order k. One obtains the
lowest-order correction to �0�k� by inserting h0�x ;k� from
Eq. �31� into Eq. �26� and projecting the result onto f0

�, keep-
ing only terms up to order k2. With �f0

� � f0�=1 one finds

�0�k� = �0�0� + k2� f0
��Q�H�
 ��

�H
+

�2

�x2� f0��
+ k2� f0

�� �

�x
��Q�H�

�

�x
f0�� . �32�

The nature of f0 implies �0�0�=0 as detailed previously.
The integrand in the scalar product in the last term is a total
derivative so that for a 2L-periodic function this term van-
ishes. For the first scalar product on the right-hand side, the
integrand reduces to Q�H� dP

dV , which implies

�0�k� = − k2dP

dV
�

−L

L

Q�H�x��dx . �33�

We note that Eq. �33� is valid for a general expression of
the mobility factor Q�H�, not only for the no-slip case stud-
ied numerically. In general, the velocity field is such that
Q�H�	0, so that the integral in Eq. �33� is positive. This

confirms the observation made for the numerical solution
and supports the heuristic argument given at the beginning of
this subsection, i.e., that the stationary ridge is stable for
dP
dV 	0. A similar discussion can be carried out for a more
general mobility factor that could depend explicitly on x.

For the macroscopic ridge described by Eq. �12�, one has
dP
dV � dP

dVex
= dP

dr / dVex

dr . The generalization of Eq. �15� to hetero-
geneous substrates by introducing an effective local contact

angle 
̄eq�x� leads, at the ridge edge �x=r�, to P= 
̄eq�r� /r

and Vex= 2
3r2
̄eq�r�. Since the equilibrium contact angle in-

side the channel is smaller than outside, one has d
̄eq�r� /dr
	0 and therefore dVex /dr	0. However, the pressure as a
function of the half ridge width r can be nonmonotonous.

From dP
dr = �d
̄eq�r� /dr− 
̄eq�r� /r� /r, one obtains as a macro-

scopic stability criterion

1


̄eq�r�

d
̄eq�r�
dr

=
d ln 
̄eq�r�

dr
	

1

r
. �34�

For a homogeneous substrate, �0�k� can be determined in
the macroscopic limit discussed in Sec. IV. For a given con-

tact angle 
̄eq, Eqs. �15� and �18� yield

�0�k� = k21

7
�3
̄eq

5

2
�Vex = k2 
̄eq

4

35

1

P
�35�

as a function of Vex or P, respectively. These relations pro-
vide an understanding for the numerical observation in Fig. 4
that for small k the growth rate rescaled by k2 / P approaches
a constant as Vex→�, i.e., in the limit of a homogeneous
substrate.

B. Systems with driven flow: gÅ0

Figure 5�b� shows the isolines Re ��k ;g ,Vex�=0 in the

103

104

-0.100.10.20.3

V
ex

P Re(ω)/k2

(a) (b)

g = 0

k = 10-4

k = 10-2

10-4 10-3 10-2 10-1

103

104

V
ex

g

always stable

stable for
large k

stable for
large k

k = 10-5

k = 10-4

k = 10-2

FIG. 5. For reference purposes, part �a� corresponds to the ro-
tated Fig. 4�b�, obtained for the case without driven flow, with the
curve for k=0.1 removed. Part �b� traces the two zeros of Re ��k�
as a function of the driving force g by showing the isolines of
Re ��k ;Vex ,g�=0 for selected small values of k. Ridges with cross
sections between the horizontal lines are stable. Other ridges are
unstable with respect to pearling, with the marginally stable wave-
length depending on g. The channel parameters are the same as in
Fig. 4.

MECHKOV, RAUSCHER, AND DIETRICH PHYSICAL REVIEW E 77, 061605 �2008�

061605-8



g-Vex-plane for several values of k. For g=0, the correspond-
ing values of Vex are the zeros of the curves in Fig. 4�b�,
repeated for convenience in Fig. 5�a�. For small values of k
	0, as a function of g the isolines follow the two horizontal
lines, which mark the lower and upper cross sections for
which dP

dVex
=0, up to larger values of g before they turn away

from these lines. However, they never penetrate the range of
cross sections between the two horizontal lines. Thus ridges
in this range of excess cross sections remain stable also in
the presence of driven flow. For ridges with Vex outside of
this range, Fig. 5�b� leads to the following conjectures. For
any Vex, modes with a given k are stabilized by a large
enough driving force g	gc�k ,Vex� �see below�. On the other
hand, for every ridge and every finite value of g there is a
sufficiently small wave number kc�g ,Vex� such that modes
with smaller wave numbers k�kc�g ,Vex� are unstable.
Therefore, driven flow cannot stabilize a liquid ridge versus
pearling as such, but it shifts the critical wavelength for the
onset of instability to larger values: hence we expect the
appearance of larger pearls, which also emerge farther apart
from each other.

For g�0, one needs the full eigenvalue spectrum �n�k�,
for all n�0, in order to compute the lowest order correction
to �0�0� for small k in the perturbation analysis presented in
Sec. V A. However, for large g and small k we expect that
the last term in Eq. �20�, i.e., the term proportional to g,
dominates the eigenvalue problem, which turns ��k ,g� into a
function of gk. We have confirmed this expectation numeri-
cally. Figure 6�a� shows the stability boundary for a given
ridge cross section Vex in the g-k plane. For large g, the
critical wave number kc�g ,Vex�, for which
Re ��kc�g ,Vex� ;g ,Vex�=0, is indeed proportional to 1 /g.
Modes with smaller k �or longer wavelength� require a larger
driving force to be stabilized. However, for every g	0 there
are unstable modes. For a given cross section Vex and in-
creasing values of g, Fig. 6�b� shows the growth rate

Re ��k ;g ,Vex� as a function of gk for increasing values of g.
As expected, the curves converge to a limiting curve
���gk ;Vex�. Interestingly, ���gk ;Vex���gk�2 for large as
well as for small values of gk, but with different prefactors
�positive for gk�10−10, negative for gk�10−9�.

VI. SUMMARY AND CONCLUSIONS

As illustrated in Fig. 1, we have used the lubrication ap-
proximation in order to analyze the stability of nonvolatile
liquid ridges versus pearling in the case of driven flow along
a chemical stripe with smooth edges �see Fig. 2�. Such ridges
can be stable versus pearling even though their contact lines
are not completely pinned �see Fig. 3�. In an analytic pertur-
bation analysis for small wave numbers k as well as numeri-
cally �see Fig. 4� we have confirmed dP

dV 	0 as the corre-
sponding stability criterion, i.e., a ridge is stable versus
pearling if the pressure P in the ridge increases with its cross
section V. If the ridge is guided by a chemical channel with
smooth edges, which can be characterized by a laterally
varying effective contact angle 
eq�x�, we find the stability
criterion

d ln 
eq�x�
dx 	

1
x , where x is the lateral distance from the

center of the stripe. This condition for the chemical design of
the stripe also holds in the case of driven flow along the
chemical stripe, as detailed below.

We find the driving body force g to have an incomplete
stabilizing effect �see Fig. 5�. For a given amount of liquid
on the stripe, modes that are stable for g=0 remain stable for
g	0. However, if there is a critical wave number kc such
that modes with k�kc are unstable, kc merely decreases as
1 /g for large g �see Fig. 6�. Therefore, if the ridge is subject
to the pearling instability for g=0, for any finite g there is a
nonzero range of long wavelengths for which the pearling
mode is unstable. Hence the pearling instability cannot be
suppressed by flow and we merely expect the size of the
emerging pearls and the distance between them to increase
with g. These findings are in agreement with the results in
Ref �13� for well-filled ridges with large contact angles �90°
and a fixed contact line. However, in contrast to the case of
well-filled ridges, in the thin-film limit the maximum of the
growth rate Re � of unstable modes does not increase with g
�see Fig. 6�b��.

Our analysis shows that a chemical stripe with smooth
edges can fail to stabilize a liquid ridge if the pinning of the
three-phase contact lines is insufficient. We expect similar
results to hold for imperfect pinning of the three-phase con-
tact line at rounded geometric edges as studied in Ref. �26�.
To the best of our knowledge, the stability of liquid ridges in
topographic channels with smooth edges has not yet been
investigated. However, Ref. �11� gives a general framework
for performing such an analysis within a capillary model.
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